An interactive feature selection method based on learning-from-crowds
نویسندگان
چکیده
منابع مشابه
An efficient bit-based feature selection method
Feature selection is about finding useful (relevant) features to describe an application domain. Selecting relevant and enough features to effectively represent and index the given dataset is an important task to solve the classification and clustering problems intelligently. This task is, however, quite difficult to carry out since it usually needs a very time-consuming search to get the featu...
متن کاملConstructive Meta-level Feature Selection Method Based on Method Repositories
Feature selection is one of key issues related with data pre-processing of classification task in a data mining process. Although many efforts have been done to improve typical feature selection algorithms (FSAs), such as filter methods and wrapper methods, it is hard for just one FSA to manage its performances to various datasets. To above problems, we propose another way to support feature se...
متن کاملInterActive Feature Selection
We study the effects of feature selection and human feedback on features in active learning settings. Our experiments on a variety of text categorization tasks indicate that there is significant potential in improving classifier performance by feature reweighting, beyond that achieved via selective sampling alone (standard active learning) if we have access to an oracle that can point to the im...
متن کاملActive Learning from Crowds
Obtaining labels can be expensive or timeconsuming, but unlabeled data is often abundant and easier to obtain. Most learning tasks can be made more efficient, in terms of labeling cost, by intelligently choosing specific unlabeled instances to be labeled by an oracle. The general problem of optimally choosing these instances is known as active learning. As it is usually set in the context of su...
متن کاملLearning From Crowds
For many supervised learning tasks it may be infeasible (or very expensive) to obtain objective and reliable labels. Instead, we can collect subjective (possibly noisy) labels from multiple experts or annotators. In practice, there is a substantial amount of disagreement among the annotators, and hence it is of great practical interest to address conventional supervised learning problems in thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SCIENTIA SINICA Informationis
سال: 2020
ISSN: 1674-7267
DOI: 10.1360/ssi-2019-0208